Flat Sheets & Facades

Suitable for a wide range of external and internal applications
Nutec flat sheets are manufactured from a combination of Portland cement, silica and organic fibres, and do not contain any asbestos fibres. These materials have considerable strength in their own right and will not deteriorate with age.

EVERITE has over the years established a reputation for producing outstanding quality flat sheets which have been used in a wide range of external and internal applications.

In the late eighties and after extensive research, EVERITE launched its range of Nutec flat sheets, the registered name for products manufactured without asbestos as a raw material. This development has resulted in innovative new products which not only have similar characteristics to fibre-cement flat sheets, but are superior in many ways.

Nutec flat sheets are available in medium and high density material and in plain and medium density textured finishes, offering a wider choice for innovative applications.

As a partition board, it offers major advantages over conventional materials in terms of strength and resistance to biological attack.

In summary Nutec flat sheets are:

- An economical all-purpose building board which is unaffected by moisture and therefore ideal for internal and external use in almost any application.
- Relatively light in weight and can be supported on light gauge metal frames or light timber structures. These factors facilitate easy handling and erection and are major benefits on projects where low mass construction is an important factor.
- Non combustible and provide perfect protection against flying sparks.
- Resistant to corrosion and are unaffected by ultraviolet light.
- Designed to have good thermal properties when compared with other building materials.
- Manufactured to the highest internal quality standards and compliance is ensured by strict quality assurance programmes in the production process as well as stringent testing in our laboratory. All Nutec Flat sheets carry a SABS mark for compliance to the specification SANS 803. Nutec flat sheets are supplied in their natural colour, but are compatible with a large variety of in-situ applied coatings and paints. This will allow the designer an almost limitless combination of colours and textures for external and internal applications.

The sheets are best painted with a pure acrylic PVA paint. Where it is intended to use oil or alkyd paints it is essential to prime the sheet with an alkali-resistant sealer. In this instance both faces of the product should be sealed.

Use only high density sheets for external flat sheet facades where the surface is to be painted.
Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Design Criteria</td>
<td>3</td>
</tr>
<tr>
<td>Nutec Mechanical and Physical Properties</td>
<td>5</td>
</tr>
<tr>
<td>Nutec Mechanical and Physical Properties</td>
<td>6</td>
</tr>
<tr>
<td>Fire Resistance - Floor/ceiling Systems</td>
<td>7</td>
</tr>
<tr>
<td>Fire Resistance - Nutec Boards in Wall Systems</td>
<td>8</td>
</tr>
<tr>
<td>Acoustical Insulation</td>
<td>9</td>
</tr>
<tr>
<td>Handling and Storage</td>
<td>10</td>
</tr>
<tr>
<td>General Installation Guidelines</td>
<td>11</td>
</tr>
<tr>
<td>Product Range</td>
<td>12</td>
</tr>
<tr>
<td>Application Possibilities</td>
<td></td>
</tr>
<tr>
<td>• Recommended Uses of Nutec flat sheets</td>
<td>13</td>
</tr>
<tr>
<td>Fixing Details</td>
<td></td>
</tr>
<tr>
<td>• Special Fascia Boards</td>
<td>14</td>
</tr>
<tr>
<td>• Timber and Steel Framework</td>
<td>15</td>
</tr>
<tr>
<td>• Flush Jointing</td>
<td>18</td>
</tr>
<tr>
<td>• Wall Tiling</td>
<td>19</td>
</tr>
<tr>
<td>• Nutec Sheets in Shuttering Applications</td>
<td>21</td>
</tr>
<tr>
<td>• Access Floor System</td>
<td>22</td>
</tr>
<tr>
<td>General Information Facades and Cladding</td>
<td>23</td>
</tr>
<tr>
<td>Accessories</td>
<td>24</td>
</tr>
<tr>
<td>Fixing Details</td>
<td>25</td>
</tr>
<tr>
<td>Jointing Systems</td>
<td>29</td>
</tr>
<tr>
<td>General information on Tongue & Groove Board</td>
<td>35</td>
</tr>
<tr>
<td>Bill of Quantities</td>
<td>39</td>
</tr>
<tr>
<td>Company - Contact Details</td>
<td>40</td>
</tr>
</tbody>
</table>

Flat Sheets & Facades 2009
Catalogue Information
The information contained in this catalogue serves as a general guide only and should not be accepted as the standard for all construction. Consult EVERITE for designs of a special nature.

This service is provided free of charge and without obligation, but architects, engineers and specifiers must finally approve the acceptability in terms of the design and construction criteria, as well as other implications.

Mechanical and Physical Properties
For details on the mechanical and physical properties of Nutec flat sheets, refer to Table 2, Page 5 and 6.

Recommended Uses
The recommended uses of Nutec flat sheets under normal conditions are tabulated for easy reference in Table 3, Page 13.

Exposed and Windy Conditions
The information presented in this catalogue is relevant for normal wind-loading conditions. EVERITE should be consulted for advice on specific fixing and framing recommendations where structures are situated in high wind areas.

Substructure
The design of structural supports requires professional expertise and should, as a general rule, be executed by structural engineers. Minimum design parameters are that the structure should be able to withstand 1.2 kPa wind loadings. (Structures not higher than 6 metres.)

TABLE 1 Recommended Supporting Structure for Nutec Flat Sheets

<table>
<thead>
<tr>
<th>Description and Thickness of Board</th>
<th>External and Internal Vertical Cladding</th>
<th>Maximum spans between vertical supports - mm</th>
<th>Maximum spans between horizontal supports - mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium density</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>600</td>
<td>800</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>600</td>
<td>900</td>
</tr>
<tr>
<td>High density</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>600</td>
<td>800</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>800</td>
<td>1 200</td>
</tr>
</tbody>
</table>

NB:
• The information presented in the above table is relevant for wind-loading conditions normally encountered and for structures not higher than 6m.
• For higher structures and for areas where design wind pressure exceeds 1.5 kPa, a structural engineer should be consulted.
• Consult EVERITE for specific fixing and framing recommendations where the sheets are to be used for applications such as floors, shelving and permanent shuttering.
• If used for flooring, and covered by ceramic tiles or other inflexible material, expansion joints must be provided. Refer to EVERITE sales office technical department.
• Using 9mm and 12mm M.D. externally, coating in a smooth acrylic paint is recommended.
Ventilation
When using Nutec flat sheets to form a double skin wall in a prefabricated steel or timber framed structure, the cavity between the two skins should be ventilated. In these structures, especially in humid conditions, foil is often installed as a moisture barrier and as an insulator. Ventilating the cavity will permit the evaporation of any condensation which may collect on the insulating material.

Site Service
Site service personnel are available on request to assist with recommended storage, handling and erection of the Company’s products before and during installation.
TABLE 2 Mechanical and Physical Properties

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>UNIT</th>
<th>High Density</th>
<th>Semi-High Density</th>
<th>Medium Density</th>
<th>Textured Nutec</th>
<th>TEST METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIMENSIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness Tolerance:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 mm</td>
<td>mm</td>
<td>-</td>
<td>+ 0.3 or - 0.3</td>
<td>± 0.8</td>
<td>± 0.8</td>
<td>SANS 803</td>
</tr>
<tr>
<td>10 mm</td>
<td>mm</td>
<td>± 0.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SANS 803</td>
</tr>
<tr>
<td>12 mm</td>
<td>mm</td>
<td>-</td>
<td>± 0.8</td>
<td>-</td>
<td>-</td>
<td>SANS 803</td>
</tr>
<tr>
<td>15 mm</td>
<td>mm</td>
<td>± 1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SANS 803</td>
</tr>
<tr>
<td>Length Tolerance:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All lengths</td>
<td>mm</td>
<td>± 2</td>
<td>+0 or -5</td>
<td>+3 or -5</td>
<td>+3 or -5</td>
<td>SANS 803</td>
</tr>
<tr>
<td>Width Tolerance:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All widths</td>
<td>mm</td>
<td>± 2</td>
<td>+0 or -2</td>
<td>+3 or -5</td>
<td>+3 or -5</td>
<td>SANS 803</td>
</tr>
<tr>
<td>Squareness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All sizes</td>
<td>mm</td>
<td>Maximum 5</td>
<td>Maximum 2</td>
<td>Maximum 5</td>
<td>Maximum 5</td>
<td>SANS 803</td>
</tr>
<tr>
<td>Edge Trueness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All sizes</td>
<td>mm</td>
<td>Maximum 1</td>
<td>Maximum 3</td>
<td>Maximum 5</td>
<td>Maximum 5</td>
<td>SANS 803</td>
</tr>
<tr>
<td>PHYSICAL PROPERTIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum MOR : With Grain</td>
<td>MPa</td>
<td>9.00 (2)</td>
<td>8.44 (1)</td>
<td>7.40 (1)</td>
<td>7.40 (1)</td>
<td>SANS 803 – 1995</td>
</tr>
<tr>
<td>Minimum MOR : Across Grain</td>
<td>MPa</td>
<td>13.00 (2)</td>
<td>12.10 (1)</td>
<td>10.60 (1)</td>
<td>10.60 (1)</td>
<td>SANS 803 – 1995</td>
</tr>
<tr>
<td>Target Density</td>
<td>g/cm³</td>
<td>1.50</td>
<td>1.35</td>
<td>1.26</td>
<td>1.26</td>
<td>ISO 8336-1993</td>
</tr>
<tr>
<td>Maximum Hygral Linear Expansion</td>
<td>mm/m</td>
<td>2.47</td>
<td>2.47</td>
<td>2.47</td>
<td>2.47</td>
<td>SANS 803 – 1995</td>
</tr>
</tbody>
</table>

TYPICAL VALUES

<table>
<thead>
<tr>
<th>TEST METHOD</th>
<th>UNIT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Conductivity</td>
<td>W/m.K</td>
<td>0.30</td>
</tr>
<tr>
<td>Thermal Expansion Coefficient</td>
<td>20-70˚C</td>
<td>Negligible</td>
</tr>
<tr>
<td>Moisture Movement</td>
<td>°C⁻¹</td>
<td>4.21 x 10⁴</td>
</tr>
<tr>
<td>With Grain</td>
<td>°C⁻¹</td>
<td>9.31 x 10⁶</td>
</tr>
<tr>
<td>Across Grain</td>
<td>°C⁻¹</td>
<td>9.31 x 10⁶</td>
</tr>
<tr>
<td>Moisture Content</td>
<td>%</td>
<td>0.30</td>
</tr>
<tr>
<td>Water Absorption</td>
<td>%</td>
<td>0.06</td>
</tr>
<tr>
<td>Permeability</td>
<td>%</td>
<td>6.92</td>
</tr>
<tr>
<td>Water Vapour Transmission</td>
<td>ng/Pa.s.m²</td>
<td>97.154</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>10 – 12</td>
</tr>
<tr>
<td>MECHANICAL PROPERTIES</td>
<td></td>
<td>276.79</td>
</tr>
<tr>
<td>MOR : With Grain</td>
<td>MPa</td>
<td>6.20 (2)</td>
</tr>
<tr>
<td>MOR : Across Grain</td>
<td>MPa</td>
<td>12.10 (1)</td>
</tr>
</tbody>
</table>

Flat Sheets & Facades 2009
TABLE 2

Nutec Mechanical and Physical Properties

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>UNIT</th>
<th>High Density</th>
<th>Semi-High Density</th>
<th>Medium Density</th>
<th>Textured Nutec</th>
<th>TEST METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification in accordance to ASTM C1186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressive Strength Parallel to Surface of Board</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASTM C1186</td>
</tr>
<tr>
<td>With Grain</td>
<td>MPa</td>
<td>15.21</td>
<td>-</td>
<td>10.86 (2)</td>
<td>-</td>
<td>ASTM D1037</td>
</tr>
<tr>
<td>Across Grain</td>
<td>MPa</td>
<td>24.62</td>
<td>-</td>
<td>15.57 (3)</td>
<td>-</td>
<td>ASTM D1037</td>
</tr>
<tr>
<td>Tensile Strength Parallel to Surface of Board</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASTM D1037</td>
</tr>
<tr>
<td>With Grain</td>
<td>MPa</td>
<td>3.47 (2)</td>
<td>-</td>
<td>2.11 (2)</td>
<td>-</td>
<td>ASTM D1037</td>
</tr>
<tr>
<td>Across Grain</td>
<td>MPa</td>
<td>4.34 (2)</td>
<td>-</td>
<td>2.24 (2)</td>
<td>-</td>
<td>ASTM D1037</td>
</tr>
<tr>
<td>Young’s Modulus (E.Mod)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASTM D1037</td>
</tr>
<tr>
<td>With Grain</td>
<td>MPa</td>
<td>9898 (3)</td>
<td>-</td>
<td>5337 (3)</td>
<td>-</td>
<td>ASTM C120</td>
</tr>
<tr>
<td>Across Grain</td>
<td>MPa</td>
<td>11645 (3)</td>
<td>-</td>
<td>6407 (3)</td>
<td>-</td>
<td>ASTM C120</td>
</tr>
<tr>
<td>Block Shear Strength</td>
<td>MPa</td>
<td>3.30 (3)</td>
<td>-</td>
<td>1.60 (2)</td>
<td>-</td>
<td>ASTM D143</td>
</tr>
<tr>
<td>FIRE PROPERTIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASTM D143</td>
</tr>
<tr>
<td>Surface Spread of Flame</td>
<td>Class</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>SANS 10177 Part III, BS 476: Part 7</td>
</tr>
<tr>
<td>Spread of Flame Index</td>
<td>-</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>SANS 10177 Part III</td>
</tr>
<tr>
<td>Heat Contribution Index</td>
<td>-</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>SANS 10177 Part III</td>
</tr>
<tr>
<td>Smoke Emission Index</td>
<td>-</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>SANS 10177 Part III</td>
</tr>
<tr>
<td>Surface Fire Index</td>
<td>-</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>SANS 10177 Part III</td>
</tr>
<tr>
<td>Surface Burning Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASTM E84</td>
</tr>
<tr>
<td>FSI (Flame spread index)</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>ASTM E84</td>
</tr>
<tr>
<td>SD (Smoke developed index)</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>ASTM E84</td>
</tr>
<tr>
<td>Non-Combustibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BS 5980: 1980</td>
</tr>
<tr>
<td>Non-combus.</td>
<td>-</td>
<td>150˚C</td>
<td>150˚C</td>
<td>150˚C</td>
<td>150˚C</td>
<td>-</td>
</tr>
<tr>
<td>OTHER PROPERTIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASTM C1185</td>
</tr>
<tr>
<td>Frost Resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ASTM C1185</td>
</tr>
<tr>
<td>Cycles Completed</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>ASTM C1185</td>
</tr>
<tr>
<td>Biological Resistance</td>
<td>%</td>
<td>97.5</td>
<td>-</td>
<td>78.5</td>
<td>-</td>
<td>ASTM C1185</td>
</tr>
<tr>
<td>Rodent Resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MC 5417</td>
</tr>
<tr>
<td>Termite Resistance</td>
<td>Class</td>
<td>81</td>
<td>-</td>
<td>81</td>
<td>-</td>
<td>MC 5417</td>
</tr>
<tr>
<td>Resistance to Bacteria</td>
<td></td>
<td>No Damage</td>
<td>-</td>
<td>No Damage</td>
<td>-</td>
<td>BS 5980: 1980</td>
</tr>
</tbody>
</table>

(1) Dried till constant weight
(2) Saturated with water
(3) Equilibrium conditions
1. Softwood timber joists - 230mm x 50mm at 600mm centre.
2. Floor Boards HD Nutec, 3600mm x 1200mm x 15mm.
3. Softwood timber noggings at 600mm centres by means of 100mm nails.
4. 50mm timber screws at 300mm centres.
5. Mineral Fibre seal.
6. 6mm Nutec Ceiling Board, 3600mm x 1200mm. Fixed with 50mm timber screws at 300mm centres to underside.

Insulation: 50mm Insulmate, 80 kg/m².
Joints sealed with Intumex MA.
Screws and nail heads sealed with sodium silicate liquid.
Fire Resistance
-Nutec Boards in Wall Systems

<table>
<thead>
<tr>
<th>Fire Rating</th>
<th>Timber Frame Systems</th>
<th>Galvanised Steel Stud Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 minutes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Face layer joints to be taped and plastered.
Drywall screws spaced at +/- 250mm centres.
All fixings according to Everite Building Products’ recommendations.
<table>
<thead>
<tr>
<th>Rw - value (dB)</th>
<th>Nutec</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.0 dB</td>
<td>4mm MD Nutec</td>
</tr>
<tr>
<td>35.7 dB</td>
<td>51mm Drywall studs</td>
</tr>
<tr>
<td>38.0 dB</td>
<td>52mm Drywall studs</td>
</tr>
<tr>
<td>40.0 dB</td>
<td>52mm Drywall studs</td>
</tr>
<tr>
<td>44.8 dB</td>
<td>6mm MD Nutec</td>
</tr>
<tr>
<td>45.7 dB</td>
<td>6mm MD Nutec</td>
</tr>
<tr>
<td>47.2 dB</td>
<td>6mm MD Nutec</td>
</tr>
</tbody>
</table>
Nutec flat sheets are manufactured from a composite material containing mainly cement and may be damaged under excessively high shock loads. Reasonable care should therefore be taken to ensure that the products are not dropped or subjected to rough handling.

While stacked, Nutec flat sheets should not be exposed to the elements for lengthy periods and under cover storage is recommended.

A smooth level under cover area should therefore be made available where the sheets can be stacked safely. The stacks should be supported on suitable timber bearers at maximum 400mm centres and the edges and corners protected against possible damage.

Where under cover storage is not available, the stacked product should be covered to avoid it becoming soaked with water. Soaked sheets will be difficult to handle and should be allowed to dry out before use.

It is recommended that sheets should not be stored for a period exceeding one month if not under cover.
• Nutec flat sheets as manufactured are made without asbestos fibres, it is nevertheless recommended that when working with the product, tools that create excessive dust should not be used.

Ordinary carpenters’ tools can be used effectively.

For further information refer to the brochure ‘Finishing and Maintenance’.

• To ensure a high standard of finish, it is essential that the supporting structure is accurately constructed. Warped, twisted or poor quality timber, or badly erected steelwork will reflect in the finished surface and can cause damage to the product.

The structure must be checked and adjusted as necessary to ensure that there is no bowing or distortion which could affect the true plane of the final application.

• For maximum spacings between supports for Nutec flat sheets, refer Table 1 page 3 and Fig. 8 page 26 and Fig. 9 page 27.

Sheets should not be fixed directly onto a masonry wall, but on timber or steel battens forming a framework to which the fascia boards or sheets can be fixed.

• Holes for fixing must be set out evenly and must be drilled and not punched.

An ordinary hand drill and steel drill bits specially sharpened to a 20° angle are recommended.

The drill bit must be 2mm larger than the diameter of the fixing bolt or screw.

• When the sheets are fixed into a framed structure allowance must be made for thermal movements in the sheet and the supporting structure.

The allowance for movement will depend on the size of the sheet, but an average can be accepted as ± 2mm per metre in both directions. For facade jointing, use recommended jointing details.
NUTEC FLAT SHEETS

MD = Medium Density
HD = High Density

<table>
<thead>
<tr>
<th>Product No.</th>
<th>Nominal Thickness mm</th>
<th>Size mm</th>
<th>Average Mass kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>010-910</td>
<td>9 MD</td>
<td>2 400 x 1 200</td>
<td>38</td>
</tr>
<tr>
<td>010-911</td>
<td>9 MD</td>
<td>3 000 x 1 200</td>
<td>47</td>
</tr>
<tr>
<td>010-912</td>
<td>9 MD</td>
<td>3 600 x 1 200</td>
<td>52</td>
</tr>
<tr>
<td>011-210</td>
<td>12 MD</td>
<td>2 400 x 1 200</td>
<td>49</td>
</tr>
<tr>
<td>011-211</td>
<td>12 MD</td>
<td>3 000 x 1 200</td>
<td>61</td>
</tr>
<tr>
<td>011-212</td>
<td>12 MD</td>
<td>3 600 x 1 200</td>
<td>73</td>
</tr>
<tr>
<td>011-005</td>
<td>10 HD</td>
<td>3 000 x 1 200</td>
<td>61</td>
</tr>
<tr>
<td>011-006</td>
<td>10 HD</td>
<td>3 600 x 1 200</td>
<td>73</td>
</tr>
<tr>
<td>011-505</td>
<td>15 HD</td>
<td>3 000 x 1 200</td>
<td>87</td>
</tr>
<tr>
<td>011-506</td>
<td>15 HD</td>
<td>3 600 x 1 200</td>
<td>104</td>
</tr>
</tbody>
</table>

Textured Tongue & Groove Boards used for internal cladding only:

<table>
<thead>
<tr>
<th>Product No.</th>
<th>Nominal Thickness mm</th>
<th>Size mm</th>
<th>Average Mass kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>650-567</td>
<td>6 MD</td>
<td>1 200 x 2 400</td>
<td>24</td>
</tr>
<tr>
<td>650-568</td>
<td>6 MD</td>
<td>1 200 x 3 000</td>
<td>30</td>
</tr>
<tr>
<td>650-569</td>
<td>6 MD</td>
<td>1 200 x 3 600</td>
<td>37</td>
</tr>
<tr>
<td>060-643</td>
<td>9 MD</td>
<td>1 200 x 2 400</td>
<td>35</td>
</tr>
<tr>
<td>060-644</td>
<td>9 MD</td>
<td>1 200 x 3 000</td>
<td>44</td>
</tr>
<tr>
<td>060-645</td>
<td>9 MD</td>
<td>1 200 x 3 600</td>
<td>52</td>
</tr>
</tbody>
</table>

Plain Tongue & Groove Boards used for internal cladding only:

<table>
<thead>
<tr>
<th>Product No.</th>
<th>Nominal Thickness mm</th>
<th>Size mm</th>
<th>Average Mass kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>650-566</td>
<td>6 MD</td>
<td>1 200 x 3 000</td>
<td>30</td>
</tr>
</tbody>
</table>

Floor Boards:

<table>
<thead>
<tr>
<th>Product No.</th>
<th>Nominal Thickness mm</th>
<th>Size mm</th>
<th>Average Mass kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>011-504</td>
<td>15HD Floor Board</td>
<td>1 800 x 1 200</td>
<td>52</td>
</tr>
<tr>
<td>Product Description</td>
<td>Medium Density</td>
<td>High Density</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plain 9mm</td>
<td>Textured 9mm</td>
<td>Plain 10mm</td>
</tr>
<tr>
<td>Internal panelling</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>Gable cladding</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>Prefabricated housing</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>Steel & Timber frame houses & steel frame interior walls</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>Steel & Timber frame houses & steel frame exterior walls</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>Partitioning</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>Sandwich panels</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>Special size fascias</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>Louvres</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>Balustrading</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>Steel beam and column lining</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>Cable trench covers</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>Permanent shuttering</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>Toilet and shower partitioning</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>Floors</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>Special size windowsills</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>External facades (stone chip finish)</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>External facades (paint application)</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
<tr>
<td>Suspended floors</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
<td>● ● ● ●</td>
</tr>
</tbody>
</table>
Special Fascia Boards

FIG. 1 Using Nutec Flat Sheets as a Special Fascia

- **NB:**
 - In the above application 9mm medium density sheets are used. In instances where ceramic tiles are fixed to a fascia, minimum thickness of sheets should be 10mm high density or 12mm medium density sheets.
 - The flashing should be sloped away from the face of the fascia to avoid discolouration due to dust being washed down by rain over the finished surface.
 - For spanning capabilities of FLAT SHEETS, refer Table 1, Page 3.
 - Fascias should not be fixed directly to a wall, use timber battens to provide a framework for the fascia.
NB:
- Timber or steel framing may be used and should be constructed in accordance with local building regulations and acceptable building practice.
- Timber should be selected structural grade timber.
- Timber supports must be firmly secured to top and bottom plates and frames must not rely on the Nutec sheets for stability.
- Support spacings for external or internal walls should not exceed 600mm centres.
- Framing members, should be arranged to support all sheet edges.
- Where the support faces behind sheet joints are less than 38mm wide, pack out to provide additional landing for sheet fixing. Refer fig 4, Page 20.
- For further information on timber framed structures, refer to SANS 10082.
Fixing Details (cont.)

Fixing of Sheets to Support

1. Timber stud
2. Galvanised nail or wood screw
3. Nutec sheet

Fixing of Sheet to Narrow Support

1. Nutec sheet
2. Galvanised nail or wood screw
3. Packing as required for narrow stud
4. Narrow stud

Jointing

There are various methods that can be used for jointing.

Showing the Use of an H-profile Strip

1. Galvanised nail or wood screw
2. H-profile jointing strip
3. Nutec-cement flat sheet
4. Timber stud
5. Fixing screw
6. Metal frame
Jointing (cont.)

Showing Mouldings Used as Cover Strips

1. Timber moulding
2. Nutec-cement flat sheet
3. Timber stud
4. Galvanised nail or wood screw
5. Fixing screw
6. Metal frame

Illustrating the Use of Epoxy Fillers for Jointing

JOINTING ON A STRAIGHT WALL

EXTERNAL CORNER JOINT

1. Epoxy filler
2. Nutec sheet
3. Screw fixing
4. Metal frame
5. Galvanised nail or wood screw
6. Timber stud

INTERNAL CORNER JOINT

1. Timber moulding
2. Nutec-cement flat sheet
3. Timber stud
4. Galvanised nail or wood screw
5. Fixing screw
6. Metal frame
Typical Flush Jointing Application

Everite should be consulted for advice on specific application and recommended compounds to be used.

For flush jointing of Nutec sheets, whether erected on steel studs or timber studs, the procedure is as follows:

- Prepare jointing compound as per manufacturer’s instructions.
- A suitable plaster is recommended.
- Apply the mixture firmly into the joints between the edges of the board.
- To avoid premature drying out of the mixture do not fill joints longer than 5m at a time.
- Embed ‘Fibatape’ into the mixture using a spatula or plastering trowel and allow to dry thoroughly. Refer Fig. 2.
- Apply a coat of the mixture to nail or screw heads and allow to dry.
- After the base coat has thoroughly dried out apply further coats, allowing each coat to dry before the next coat is applied.
- Care should be taken to feather out each application so that a smooth joint results. The final coat is finished off by using a fine grit sand paper.
- For internal corners use ‘Fibatape’ and for external corners use a metal ‘Corner Bead’. Refer Fig. 2 and apply jointing compound as described above.

FIG. 2 Flushing Jointing Application

1 Nutec sheet
2 Edge of board
3 Fixings
4 Fibatape
5 Joint between boards base coat
6 Second coat
7 Final coat
Wall Tiling

Where a partition wall is finished with ceramic wall tiles, the following procedures should be followed:

- Reduce the stud spacing to a maximum of 400 mm.
- Provide horizontal noggings between studs at 900 mm centres.
- External and internal corner studs must be joined together using a corner bead.
- Sealed both sides of the Nutec sheet with a concrete sealer.
- Before fixing tiles ensure that the boards are completely free of dust or grease.
- Using a notched trowel apply suitable tile adhesive to the partition board covering an area of 1m² at a time.
- Press tile firmly into the adhesive to ensure that no voids occur under the tiles.
- Allow a minimum gap of 2mm between tiles for grouting.
- Directions for mixing of adhesive and grout should be obtained from the manufacturers.
- For bath, shower/wall junction detail refer to Figs. 3, 4 and 5, Pages 19 and 20.

FIG. 3 Bath/Wall Junction Detail Using Steel Frame

1. Ceramic wall tiles
2. Nutec sheet
3. Sealant
4. Support angle pop-riveted to stud
5. Galvanised stud
6. Profile of bath
FIG. 4 Shower Base/Wall Junction Detail Showing Steel Frame

1 Nutec sheet
2 Ceramic tiles
3 Steel nogging
4 Galvanised stud
5 Sealant
6 Profile of shower base
7 Track
8 Screen bedding
9 Nutec sheet

FIG. 5 Base/Wall Junction detail using timber framing

1 Timber stud
2 Nutec sheet
3 Ceramic sheet
4 Backing nogging
5 Sealant
6 Fixing point
7 Timber rail to secure rim of bath
8 Timber spacer
9 Base plate
10 Concrete floor slab
11 Nutec sheet
12 Bath
1. In 1200 widths
2. Shuttering to have 25mm Minimum bearing at each end
3. Concrete must be spread evenly to avoid excessive heaping
Access Floor System

Typical Structure for Suspended Floor on steel supports

![Diagram of access floor system]

600 x 600 x 15mm HD Nutec Board

Unsupported Area (570 x 570)

Steel Grid

Typical Loads and Deflection Measured per Floor Board

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Temp. °C</th>
<th>RH %</th>
<th>Deflection at 3kN Loading (mm)</th>
<th>Maximum Load Achieved (kN)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.9</td>
<td>45</td>
<td>2.23</td>
<td>4.99</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>21.9</td>
<td>45</td>
<td>2.34</td>
<td>5.39</td>
<td>Ambient</td>
</tr>
<tr>
<td>3</td>
<td>21.9</td>
<td>45</td>
<td>2.57</td>
<td>5.13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>65</td>
<td>3.40</td>
<td>5.29</td>
<td>48 hour conditioned samples</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>65</td>
<td>3.18</td>
<td>5.27</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>65</td>
<td>3.42</td>
<td>5.72</td>
<td></td>
</tr>
</tbody>
</table>
Application
EVERITE Nutec sheets and moulded panels are particularly suitable where a light weight and durable cladding is required. They protect the structure, yet provide access to the many services which are required in modern buildings. An existing building can be given an entirely new facade without major alteration to its structural framework.

The availability of in situ coated surfaces presents the designer with an almost limitless combination of colour and texture.

Quality Standards
EVERITE sheets and moulded panels are manufactured to the requirements of ISO 9001:2000. Flat sheets carry an SABS mark under specification SANS 803.

Fire
Nutec sheets are non-combustible and do not contribute to the spread of flame.

Thermal Insulation
The thermal properties of Nutec sheets and moulded panels compare very well with other building materials available on the market. For thermal conductivity values (K value), refer to the table 2: Mechanical and Physical Properties, page 5.

Corrosion Resistance
Nutec sheets and moulded panels are resistant to most corrosive conditions encountered in the environment and is unaffected by ultraviolet light. For further information, consult any EVERITE Sales Office.

Fixing Accessories
Suitable fixing accessories are obtainable from EVERITE.
External Facade and Moulded Panel Fixing Accessories

All products not supplied by EVERITE

<table>
<thead>
<tr>
<th>Fixings</th>
<th>Facade</th>
<th>Moulded Panels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fastener</td>
<td>Steel Structure</td>
<td>Timber Structure</td>
</tr>
<tr>
<td>Flat Sheet Exposed Fixing</td>
<td>Flat Sheet Concealed Fixing</td>
<td>Flat Sheet Exposed Fixing</td>
</tr>
<tr>
<td>* Countersunk Head Brass Wood Screw 40mm x 12mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Self Tapping Screw Countersunk Head 35mm x 5,5mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Drill Screw Countersunk Head 30mm x 5,5mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Spade Point Screw Hexagon Washer Head 50mm x 5,5mm Steel Stainless Steel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Drill Screw Hexagon Washer Head 50mm x 5,5mm Steel Self Tapping Stainless Steel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EPDM Gaskets

<table>
<thead>
<tr>
<th>Sketch</th>
<th>Product No</th>
<th>Description</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>602-001</td>
<td>EPDM sealing gasket for use with flat sheets having open joints</td>
<td>50mm wide</td>
</tr>
<tr>
<td></td>
<td>602-002</td>
<td>EPDM sealing gasket for use with flat sheets having open joints</td>
<td>80mm wide</td>
</tr>
<tr>
<td></td>
<td>630-100</td>
<td>Ellbond FR964 Epoxy Kit</td>
<td>400 g</td>
</tr>
<tr>
<td></td>
<td>630-110</td>
<td>Ellbond FR964 Epoxy Kit Silicone Sealer Galvanised Hoop Iron 50mm x 0,5mm Foam Backing Strip Fixings</td>
<td>1 kg</td>
</tr>
</tbody>
</table>

All dimensions in mm
Setting Out and Fixing Procedures for Nutec Sheet Facade

For vertical runners or counter battens, cold rolled steel sections could also be used instead of timber as illustrated in [Fig. 7](#).

- Girts should be provided with elongated holes for fixing to supporting cleats - refer to [Fig. 7](#). This provides for adjustment of the girts to obtain a true fixing line for the panels.

- A basic framing layout is shown in [Fig. 8 page 26](#) and [Fig. 9 page 27](#) for flat sheets.

FIG. 6

1. Main structure
2. Timber runner at 600mm centres
3. Angle secured with rawl bolt
4. Rawl bolt
5. Bolt fixing to timber

- Holes can be elongated to allow for adjustment
- Dimension of supporting structure to be confirmed by engineer

All dimensions in mm

FIG. 7

1. Structural member
2. Cleat welded to structural member
3. Cold formed steel girt
4. Elongated holes to allow for adjustment

- Dimension of supporting structure to be confirmed by engineer

All dimensions in mm
• It is recommended that joints in each line of girts occur at the same column or supporting member.

• A minimum of 75 mm wide bearing surface required behind a horizontal joint to provide sufficient landing for screws to be placed at least 20 mm from the edge of the panels, Fig. 8 and 9, page 26 and page 27 for flat sheets.

FIG. 8 Horizontal Girts (See Fig. 9 page 27 for Vertical Runners)
Setting Out and Fixing Procedures Nutec Sheet Facade (Continued)

- The runners supporting the facades should not exceed 600 mm centres vertically and 800 mm centres horizontally. Framing members should be arranged to support all panel edges. Refer Fig. 8 page 26 and Fig. 9 page 27.

FIG. 9 Vertical runners

- For further design information or copy of the report on wind resistance tests performed by the CSIR, contact EVERITE Sales Office.

- The above is relevant for wind loading conditions for structures not higher than 15m.
Fixing Details (cont.)

Setting Out and Fixing Procedures of Nutec Sheets

FIG. 10 Framing Behind Horizontal Joints / Vertical Joints

All dimensions in mm

1 Cold formed steel angle spot-welded or bolted to girt
2 Fixing point
3 10mm open joint with silicone seal
4 Foam backing strip
5 Cold form steel girt

FIG. 11 Counter Screw Detail

1 In situ coating as required
2 Moulded panel
3 Steel support rail
4 Countersunk self tapping screw
5 Epoxy filler sanded flush with panel
6 2mm oversize hole
Jointing Systems

NUTEC SHEET FACADE

Open Joints

For open vertical, horizontal and corner joints, EPDM gaskets are recommended. As an extra precaution against water penetration, silicone is used in conjunction with the EPDM gasket - Fig. 12(A) and Fig. 12(B) page 29, Fig. 13(A) and Fig. 13(B) page 30, Fig. 14(A) and Fig. 14(B) Page 31.

For alternative horizontal joints, silicone is used. Fig.10 page 28 and alternative Fig.15, page 32.

FIG. 12(A) Perspective of an Open Vertical Joint

1. Timber/steel frame fixed to main structure
2. 50/80mm EPDM gasket fixed
3. Silicone bead
4. 10mm open joint
5. Nutec sheet
6. Outer line of main structure

All dimensions in mm

FIG. 12(B) Plan of an Open Vertical Joint

1. Timber/steel frame fixed to main structure
2. 50/80mm EPDM gasket fixed to frame
3. Silicone bead
4. 10mm open joint
5. Nutec sheet
6. Outer line of main structure

All dimensions in mm
Jointing Systems (cont.)

NUTEC SHEET FACADE (continued)

FIG. 13(A) Perspective of an External Open Corner Joint

1 Outer line of main structure
2 Timber/steel frame fixed to main structure
3 Silicone bead
4 50/80mm EPDM gasket fixed
5 Nutec sheet

FIG. 13(B) Plan of an External Open Corner Joint

1 Outer line of main structure
2 Timber/steel frame fixed to main structure
3 Silicone bead
4 50/80mm EPDM gasket fixed to frame
5 Nutec sheet
6 Fixing point

All dimensions in mm
Jointing Systems (cont.)

NUTEC SHEET FACADE (continued)

FIG. 14(A) Perspective of an Internal Open Corner Joint

1. Outer line of main structure
2. Timber/steel frame fixed to main structure
3. 50/80mm EPDM gasket fixed to frame
4. Silicone bead
5. Nutec sheet

FIG. 14(B) Plan of an Internal Open Corner Joint

1. Outer line of main structure
2. Timber/steel frame fixed to main structure
3. 50/80mm EPDM gasket fixed to frame
4. Silicone bead
5. Nutec sheet

All dimensions in mm
NUTEC SHEET

Sealed Joints

- For sealed joints, only silicones which are compatible with cement should be used.
- Painting over sealants is not recommended.
- The minimum joint opening should not be less than 6mm and not more than 10mm.
- The depth of the sealant should be half the sheet thickness.
- The edges of the material next to the joint should be parallel and relatively smooth.

FIG. 15 Sealed Joint Detail

FIG. 16 Plan of Window Detail Showing Closed joint at Window Reveal

1. Nutec sheet
2. Self tapping or rivet (optional)
3. Foam backing strip
4. Silicone sealant
5. 50mm Galvanised hoop iron

1. Plaster
2. Main structure
3. Steel window
4. Silicone sealant
5. Nutec sheet
6. Timber/steel frame
7. Foam backing strip

All dimensions in mm
Jointing Systems (cont.)

FLAT FACADE

Metal Flashing Corner Details

- Metal products not supplied by EVERITE.
- External and internal finishings are optional.

FIG. 17(A) Perspective of Metal Corner

FIG. 17(B) Plan of Metal Corner

All dimensions in mm

1. Chromaprep preformed metal
2. Maximum tolerance 3mm
3. Silicone sealant
4. Timber fixed to main structure
5. Nutec sheet
6. Outer line of main structure

FIG. 17(C) Perspective of Internal Metal Corner

All dimensions in mm

1. Chromaprep preformed metal corner piece
2. Maximum tolerance 3mm
3. Silicone sealant
4. Timber fixed to main structure
5. Nutec sheet
6. Outer line of main structure
General Details
Where flashing is to be used on a parapet wall, it should wherever possible be sloped away from the face of the Nutec sheet in order to avoid any discolouration of the finished surface due to rain washing down dust onto the face of the sheet.

FIG. 18 Typical Section Through Window and Parapet Wall

1 Pressed metal capping
2 Nutec sheet
3 Box gutter
4 Structural members
5 Open or sealed joints forming 10mm drip groove
6 Nutec under eaves/soffit
7 Window
8 Window trim

FIG. 19 Section Through Window sill

1 Nutec window sill
2 Angled galvanised flashing fixed to frame
3 Silicone bead
4 Nutec sheet
5 Frame fixed to main structure
6 Outer line of main structure
Ventilation

When using Nutec flat sheets to form a double skin wall in a prefabricated steel or timber framed structure, the cavity between the two skins should be ventilated. In these structures, especially in humid conditions, foil is often installed as a moisture barrier and as an insulator. Ventilating the cavity will permit the evaporation of any condensation which may collect on the insulating material.

The sheets are best painted with a pure acrylic PVA paint. Where it is intended to use oil or alkyd paints it is essential to prime the sheet with an alkali-resistant sealer. In this instance both faces of the product should be sealed.

The Tongue and Groove Textured Board is medium density. These sheets are supplied in the natural grey and can be varnished with wood stain to simulate timber. Sheets can also be painted in various techniques to achieve a pleasant aesthetic finish. These boards are ideal for ceilings, internal & external wall panelling, door panelling and garden sheds.

Handling & Storage

EVERITE boards are manufactured from composite materials and may be damaged under excessively high shock loads. Reasonable care should therefore be taken to ensure that the products are not dropped or subjected to rough handling.

A smooth level area should be made available where these products can be stacked safely. The stacks should be supported at maximum 400mm centres and stacked clear of the ground. They should be protected against possible damage. Stacking height should not exceed 500mm with cantilever not exceeding 100mm.

It is recommended that products be stored covered to keep them dirt-free before installation to prevent build-up of dust that will affect paint adhesion.

Product Range

<table>
<thead>
<tr>
<th>Product No.</th>
<th>Nominal Thickness</th>
<th>Size mm</th>
<th>Average Mass kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nominal Thickness</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td></td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textured Tongue & Groove Boards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>650-567</td>
<td>6 MD</td>
<td>1 200 x 2 400</td>
<td>24</td>
</tr>
<tr>
<td>650-568</td>
<td>6 MD</td>
<td>1 200 x 3 000</td>
<td>30</td>
</tr>
<tr>
<td>650-569</td>
<td>6 MD</td>
<td>1 200 x 3 600</td>
<td>37</td>
</tr>
<tr>
<td>060-643</td>
<td>9 MD</td>
<td>1 200 x 2 400</td>
<td>35</td>
</tr>
<tr>
<td>060-644</td>
<td>9 MD</td>
<td>1 200 x 3 000</td>
<td>44</td>
</tr>
<tr>
<td>060-645</td>
<td>9 MD</td>
<td>1 200 x 3 600</td>
<td>52</td>
</tr>
<tr>
<td>Plain Tongue & Groove Boards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>650-566</td>
<td>6 MD</td>
<td>1 200 x 3 000</td>
<td>30</td>
</tr>
</tbody>
</table>
Fixing Details

<table>
<thead>
<tr>
<th>Thickness mm</th>
<th>Maximum spans between Vertical supports – mm</th>
<th>Maximum Spans between Horizontal supports – mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>6mm</td>
<td>570</td>
<td>500</td>
</tr>
<tr>
<td>9mm</td>
<td>570</td>
<td>800</td>
</tr>
</tbody>
</table>

1. Cut the board to the correct size using a masonry cutting disk and place onto the wall in the desired position.
2. Drill 5mm holes through the board at the fixing points and fasten the board to the wall using a 5x30mm (minimum size) nail in screws with wall plugs. Cut nails can be used on plastered brick walls.
3. Make sure the screws are countersunk into the board when fastened.
4. Adjoining boards are butt joined together to simulate an extra ‘groove’ (5mm apart).
5. Use crack filler to cover the screw heads and fill the butt joint leaving a smooth finish, (eg. Painter’s mate).

FIG. 20 Flush, internal and external joints for Tongue and Groove boards.

FIG. 21 Installing Tongue and Groove board to even surfaces
Tongue and Groove (cont.)

Things to remember when installing Tongue and Groove boards.

- Tongue and Groove boards may be applied to timber frames, plastered and unplastered walls and tiled surfaces as shown in figure 21, page 36.
- Standard dado rails can be easily attached onto the wall above or below Tongue and Groove boards except when fixing strips are used. In such cases a shelf should be used instead.
- Fixing to uneven walls may required the use of fixing strips (figure 22) to ensure that the board remains flat and does not follow an uneven contour.
- Fixing strips must be fastened to the wall with nail in screws at 300mm intervals. The irregularity of the wall will determine the thickness of timber used but a minimum of 15mm should be adhered to.
- Spacer must be used at relevant fixing points behind the strips to compensate for the irregularities in the wall. A builders line must be used to draw a level across the strips.
- Tongue and Groove boards are attached to the fixing strips at the same intervals as they would normally be attached using.
- For ceiling applications these boards should be fixed at 600m centers as shown in figure 23, page 38.
- When used in wet areas, the board must be sealed continuously around the perimeter of the reverse side of the board 5mm from the edge.
Fixing Details

FIG. 23 Installing the Tongue & Groove as a Ceiling

NB: • Timber or steel framing may be used and should be constructed in accordance with local building regulations and acceptable building practice.

• Timber should be selected structural grade timber.

• Timber supports must be firmly secured to top and bottom plates and frames must not rely on the Nutec sheets for stability.

• Support spacings for external or internal walls should not exceed 600mm centres.

• Framing members, should be arranged to support all sheet edges.

• Where the support faces behind sheet joints are less than 38mm wide, pack out to provide additional landing for sheet fixing.

• For further information on timber framed structures refer to SABS 082-1975.
Sample Bill of Quantities

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Rate</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVERITE high density Nutec sheets (uncoated), medium density plain Nutec sheets (uncoated), moulded panels (uncoated), fitting & fixing accessories fixed to (specify type and material of battens or sheeting rails). Battens, sheeting rails and supporting substructure elsewhere measured, including all cutting and waste (measured net).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Flat Sheets

- **a)** EVERITE high density Nutec sheet (quote relevant dimensions of sheet) (measured net) m^2

 or

- **b)** EVERITE Nutec medium density Nutec sheet (quote relevant dimension of sheet) m^2

2. Accessories

- **a)** Metal flashing with silicone for horizontal open joints (specify size and type of metal flashing) m

 or

- **b)** EPDM gasket for vertical joints (specify size and relevant product number) m

 or

- **c)** EPDM gasket for vertical corner joints (specify size and relevant product number) m

 or

- **d)** Galvanised hoop iron cover strip used behind panel (specify type and size of joint) by others m

 or

- **e)** Silicones for joint fillers (specify type and size of joint) by others m

 or

- **f)** Foam backing strip for jointing (specify type and size) by others m

 or

- **g)** Extra over for filling in
Call Centre - 0861 333 835
www.everite.co.za

Everite National Offices

Sales Support Office
P O Box 8644 Johannesburg 2000
Heidelberg Road Kliprivier Gauteng
Telephone (011) 439 4400
Telefax (011) 903 7097

Cape Town
P O Box 26 Brackenfell 7551
Ground Floor Corporate Place
Mispel Street Belville
Telephone (021) 941 8640
Telefax (021) 941 8641

Durban
P O Box 1532 Wandsbeck 3631
1st Floor Kent House
1 Neptune Road Essex Terrace
Westville 3629
Telephone (031) 267 1903
Telefax (031) 267 1907

Bloemfontein
P O Box 981 Bloemfontein 9300
76/80 President Reitz Street
Reitz Park Westdene
Telephone (051) 448 7433
Telefax (051) 448 7435

East London
P O Box 679 East London 5200
3 Suffolk Road Berea
Telephone (043) 726 0343

George
P O Box 444 George 6530
Building Exhibit Centre
Corner Market & Hope St George
Telephone (044) 873 2408
Mobile (083) 286 3435
Telefax (044) 873 2409

Middelburg (Mpumalanga)
P O Box 7017 Kanonkop
Middelburg 1050
Mobile (083) 778 2787
Telefax (013) 244 2629

Polokwane
P O Box 552
Polokwane 0700
26, 20th Avenue Industria
Telephone (015) 297 3559/62
Telefax (015) 297 3424

Port Elizabeth
P O Box 34323
Newton Park 6055
Propnet Park Ries Street
Deal Party
Telephone (041) 401 8900
Mobile (083) 780 6162
Telefax (041) 486 1884

Worcester
P O Box 492
Worcester 6851
1 Nassau Street Worcester
Mobile (083) 286 3431
Telefax (023) 342 6966

Botswana (Gaborone)
Private Bag 003 Suite 466
Mogoditshane
Botswana
Mobile (00267) 7 263 9887
Telefax (00267) 316 7753

Namibia
P O Box 894
Swakopmund
Mobile (00264) 81 124 2655
Telefax (00264) 64 40 3733